圆上的任意一点关于直线2ax-by+2=0的对称点仍在圆上 说明直线过圆心
圆心坐标(-1,2)满足圆方程 ∴-2a-2b+2=0 得:a+b=1
1/a+2/b=(1/a+2/b)(a+b)=3+b/a+2a/b ≥3+2√2 ∴1/a+2/b的最小值是3+2√2
圆上的任意一点关于直线2ax-by+2=0的对称点仍在圆上 说明直线过圆心
圆心坐标(-1,2)满足圆方程 ∴-2a-2b+2=0 得:a+b=1
1/a+2/b=(1/a+2/b)(a+b)=3+b/a+2a/b ≥3+2√2 ∴1/a+2/b的最小值是3+2√2