在ΔABC中,AD⊥BC于点D∠B=2∠C.试说明AB+BD=CD

1个回答

  • 1、在ΔABC中,AD⊥BC于点D∠B=2∠C.试说明AB+BD=CD.

    证明:在DC上取点E,使DE=BD,连接AE,

    ∵AD⊥BC,∴AD垂直平分BE,∴AB=AE,∠B=∠AEB,

    ∵∠B=2∠C,∠AEB=∠C+∠EAC,

    ∴2∠C=∠C+∠EAC,∴∠C=∠EAC,∴AE=CD,

    ∵CD=CE+DE=AE+BD,

    ∴CD=AB+BD.

    2、在ΔABC中,AD⊥BC于点D,AB+BD=CD,.试说明∠B=2∠C.

    证明:在DC上取点E,使DE=BD,连接AE,

    ∵AD⊥BC,∴AD垂直平分BE,∴AB=AE,∠B=∠AEB,

    ∵CD=AB+BD,CD=DE+CE,∴CE=AB=AE,

    ∴∠EAC=∠C,

    ∵∠AEB=∠EAC+∠C=2∠C,

    ∴∠B=2∠C.