你先假设里面有n个零点(n>=2),任取两个相邻的零点x,y,条件满足用拉格朗日中值定理得,f'(ε)=f(x)-f(y)/(x-y),在这里取x趋向于ε,有f'(ε)=f(ε)/(ε-y),任意两个零点就有一个
微积分 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少
1个回答
相关问题
-
设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
-
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f([1/2])=1,试证明至少存在一点ξ
-
设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε使得εf '(ε)+f(ε)=
-
设f(x)在[0,1]上连续且在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.证明:(1)至少有一点m属
-
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
-
若f(x)在{0,1)上连续,在(0,1)内可导,若f(0)-f(1)=0,f1/2)=1,证明:在(0,1)至少
-
设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0
-
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f([1/2])=1.
-
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f([1/2])=1.
-
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(