A1 +A2+.+An=1
(A1 +A2+.+An)^2=A1^2+A2^2+...+An^2+2(A1A2+A2A3+……)=1 (1)
记A=A1^2+A2^2+...+An^2 = n (A1^2+A2^2+...+An^2)/ n
B=2(A1A2+A2A3+……)
由基本公式 a^2+b^2>=2ab
A1^2+A2^2>=2A1A2
A2^2+A3^2>=2A2A3
……
上述n-1个等式相加
得 (n-1)A>=B (2)
综合(1)和(2)得到A1^2+A2^2+...+An^2>=1/n