等差数列设an=a1+k(n-1)
(a1+a2+..+a2n-1)/(2n-1)
=((2n-1)*a1+k(0+1+2+3+...+2n-2))/(2n-1)
=((2n-1)*a1+k*(2n-2)*(2n-1)/2)/(2n-1)
=a1+k*(n-1)
=an
类比
等比数列有
(a1*a2*...*a2n-1)开2n-1次方根=an
证明:
等比数列设an=a1*k^(n-1)
(a1*a2*...*a2n-1)
=(a1*k^0*a1*k^1*.*a1*k^(2n-2))
=(a1^(2n-1)*k^(0+1+.+2n-2))
=a1^(2n-1)*k^((2n-2)*(2n-1)/2)
=a1^(2n-1)*k^((n-1)*(2n-1))
=(a1*k^(n-1))^(2n-1)
所以(a1*a2*...*a2n-1)开2n-1次方根
=(a1*k^(n-1))^(2n-1)开2n-1次方根
=a1*k^(n-1)
=an