余弦定理:
设三角形的三边为a b c,他们的对角分别为A B C,则有关系式
a^2=b^2+c^2-2bc*cosA
b^2=c^2+a^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC
由此,我们可以知道
c(a*cosB - b*cosA)=ac*cosB-bc*cosA
=(a^2+c^2-b^2)/2 - (b^2+c^2-a^2)/2
=a^2-b^2
余弦定理:
设三角形的三边为a b c,他们的对角分别为A B C,则有关系式
a^2=b^2+c^2-2bc*cosA
b^2=c^2+a^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC
由此,我们可以知道
c(a*cosB - b*cosA)=ac*cosB-bc*cosA
=(a^2+c^2-b^2)/2 - (b^2+c^2-a^2)/2
=a^2-b^2