(1)EF和FC;
∵AE平分∠BAC,EF⊥AC交AC于点F,BE⊥AB,
∴BE=EF;
又∵AC是正方形ABCD的对角线,
∴∠ECF=45°,
∴∠CEF=45°,
∴EF=FC.
(2)证明:∵四边形ABCD是正方形,
∴∠B=90°,
又∵EF⊥AC,
∴∠AFE=∠B,
∵AE平分∠BAC,
∴∠BAE=∠FAE,
又∵AE=AE,
∴△ABE≌△AFE(AAS),
∴BE=EF.
(1)EF和FC;
∵AE平分∠BAC,EF⊥AC交AC于点F,BE⊥AB,
∴BE=EF;
又∵AC是正方形ABCD的对角线,
∴∠ECF=45°,
∴∠CEF=45°,
∴EF=FC.
(2)证明:∵四边形ABCD是正方形,
∴∠B=90°,
又∵EF⊥AC,
∴∠AFE=∠B,
∵AE平分∠BAC,
∴∠BAE=∠FAE,
又∵AE=AE,
∴△ABE≌△AFE(AAS),
∴BE=EF.