a=b=0时
f(0)=f(0)*f(0)
f(0)[1-f(0)]=0
f(x)非0,所以 1-f(0)=0,即 f(0)=1
a=-b≠0时
f(0)=f(a)* f(-a)=1
f(x)*f(-x)=1
f(x)=1/f(-x)
故f(x)与 f(-x)同号
因为 f(x)非0,x1
当 x>0时,-x1,则 f(x) >0
故 f(x) 恒大于0
令 x1>x2
f(x2-x1)=f(x2)*f(-x1)
=f(x2)*1/f(x1)
=f(x2)/f(x1)
x2-x11
即 f(x2)/f(x1) > 1
f(x2)>f(x1) 结论得证