什么时候OC最大,请给予解释,已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,

3个回答

  • 设BC与x轴正向的最小夹角(沿逆时针方向)为α,则点C的坐标为C(acosα,asin(α+π/3)),即C(acosα,asinα/2+a√3cosα/2),所以

    OC²=a²[cos²α+(sinα/2+√3cosα/2)²]

    =a²[cos²α+sin²α/4+3cos²α/4+2√3sinαcosα/4]

    =a²[4cos²α+sin²α+3cos²α+2√3sinαcosα]/4

    =a²[4cos²α+(1-cos²α)+3cos²α+2√3sinαcosα]/4

    =a²[6cos²α+1+2√3sinαcosα]/4,

    4OC²=a²[6cos²α+1+2√3sinαcosα],

    4OC²-a²(6cos²α+1)=a²2√3sinαcosα,两边分别平方得

    16(OC²)²+(a²)²[36(cos²α)²+12cos²α+1]-8OC²a²(6cos²α+1)=12(a²)²sin²αcos²α

    =12(a²)²(1-cos²α)cos²α

    =12(a²)²cos²α-12(a²)²(cos²α)²,即

    16(OC²)²+(a²)²[36(cos²α)²+12cos²α+1]-8OC²a²(6cos²α+1)=12(a²)²cos²α-12(a²)²(cos²α)²,

    整理得

    48(a²)²(cos²α)²-48OC²a²cos²α+16(OC²)²-8OC²a²+(a²)² =0.

    因为cos²α为实数,故

    (48OC²a²)²-4×48(a²)²[16(OC²)²-8OC²a²+(a²)²]≥0,

    即(24OC²)²-48[16(OC²)²-8OC²a²+(a²)²]≥0,

    (6OC²)²-3[16(OC²)²-8OC²a²+(a²)²]≥0,

    36(OC²)²-3[16(OC²)²-8OC²a²+(a²)²]≥0,

    12(OC²)²-[16(OC²)²-8OC²a²+(a²)²]≥0,

    12(OC²)²-16(OC²)²+8OC²a²-(a²)²≥0,

    4(OC²)²-8OC²a²+(a²)²≤0,

    (OC²-a²-√3a²/2)(OC²-a²+√3a²/2)≤0,

    (1-√3/2)a²≤OC²≤(1+√3/2)a²,又OC>0,故OC≤(√3+1)a/2,所以OC最大值为OC=(1+√3)a/2.

    稍后.