解题思路:根据正方形的性质,可得OB⊥OC,BO=CO,根据直角三角形的性质,可得∠EBO+∠BEO=90°,∠BEC+∠ECF=90°,再根据与角的关系,可得∠EBO=∠ECF,根据全等三角形的判定与性质,可得答案.
证明:∵正方形ABCD的对角线AC、BD相交于点O,
∴OB⊥OC,BO=CO,
∴∠EOB=∠COG=90°.
∵CF⊥BE于点F,
∴∠CFE=∠CFB=90°.
∴∠EBO+∠BEO=90°,∠BEC+∠ECF=90°,
∴∠EBO=∠ECF.
在△BEO和△CGO中,
∠EBO=∠GCO
∠EOB=∠GOC
OB=OC,
∴△BEO≌△CGO(AAS),
∴OE=OG.
点评:
本题考点: 全等三角形的判定与性质;正方形的性质.
考点点评: 本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质.