1、f(1/2013)+f(-1/2013)=lg [2011/2013]+lg [2013/2011]=lg([2011/2013]*[2013/2011])=0
2、-1<x1<x2<1
f(x1)-f(x2)=lg (1-x1/1+x1)-lg (1-x2/1+x2)=lg[(1-x1/1+x1)/(1-x2/1+x2)]
=lg{[(1-x1)(1+x2)]/[(1+x1)(1-x2)]}=lg[(1-x1+x2-x1x2)/(1+x1-x2-x1x2)]
=lg[(1-x1x2-(x1-x2))/(1-x1x2+(x1-x2))]
因为x1-x2<0
所以(1-x1x2-(x1-x2))>(1-x1x2+(x1-x2))
所以[(1-x1x2-(x1-x2))/(1-x1x2+(x1-x2))]>1
所以f(x1)-f(x2)>0
所以f(x1)>f(x2)
所以f(x)为减函数