a^2+b^2-2a+6b+11
=(a^2-2a+1)+(b^2+6b+9)+1
=(a-1)^2+(b+3)^2+1
不论a,b取何值,都有(a-1)^2≥0,(b+3)^2≥0
所以(a-1)^2+(b+3)^2+1>0