证明:
∵等边△ABD
∴AB=BD,∠ABD=60
∵等边△BCE
∴BC=BE,∠CBE=60
∴∠DBE=180-∠ABD-∠CBE=60
∵∠ABE=∠ABD+∠DBE=60+∠DBE, ∠DBC=∠CBE+∠DBE=60+∠DBE
∴∠ABE=∠DBC
∴△ABE≌△DBC (SAS)
∴AE=DC
证明:
∵等边△ABD
∴AB=BD,∠ABD=60
∵等边△BCE
∴BC=BE,∠CBE=60
∴∠DBE=180-∠ABD-∠CBE=60
∵∠ABE=∠ABD+∠DBE=60+∠DBE, ∠DBC=∠CBE+∠DBE=60+∠DBE
∴∠ABE=∠DBC
∴△ABE≌△DBC (SAS)
∴AE=DC