如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DE

1个回答

  • ∵AD平分∠CAB交BC于点D

    ∴∠CAD=∠EAD

    ∵DE⊥AB

    ∴∠AED=∠C=90

    ∵AD=AD

    ∴△ACD≌△AED.(AAS)

    ∴AC=AE,CD=DE

    ∵∠C=90°,AC=BC

    ∴∠B=45°

    ∴DE=BE

    ∵AC=BC,AB=6cm,

    ∴2BC 2=AB 2,即BC=

    AB 2

    2 =

    6 2

    2 =3

    2 ,

    ∴BE=AB-AE=AB-AC=6-3

    2 ,

    ∴BC+BE=3

    2 +6-3

    2 =6cm,

    ∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).

    另法:证明三角形全等后,

    ∴AC=AE,CD=DE.

    ∵AC=BC,

    ∴BC=AE.

    ∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.

    故选B.