答:
f(x)=4cosxsin(x+π/6)-1
=4cosx(sinxcosπ/6+cosxsinπ/6)-1
=2√3sinxcosx+2(cosx)^2-1
=√3sin2x+cos2x
=2*[(√3/2)sin2x+(1/2)cos2x]
=2sin(2x+π/6)
单调递增区间满足:2kπ-π/2
答:
f(x)=4cosxsin(x+π/6)-1
=4cosx(sinxcosπ/6+cosxsinπ/6)-1
=2√3sinxcosx+2(cosx)^2-1
=√3sin2x+cos2x
=2*[(√3/2)sin2x+(1/2)cos2x]
=2sin(2x+π/6)
单调递增区间满足:2kπ-π/2