(1)a3-a2=a1q^2-a1q=2a1,则q^2-q-2=0,(q+1)(q-2)=0.由题意知,q+1>0,则q=2.
a4=a1q^3=8a1=4,则a1=1/2.数列{an}的通项公式为an=(1/2)*2^(n-1)=2^(n-2),n为正整数.
(2)8an=8*2^(n-2)=2^(n+1),则bn=log2[2^(n+1)]=n+1,是首项为2、公差为1的等差数列.
b1+b2+…+b10=10*(2+10+1)/2=65.
(1)a3-a2=a1q^2-a1q=2a1,则q^2-q-2=0,(q+1)(q-2)=0.由题意知,q+1>0,则q=2.
a4=a1q^3=8a1=4,则a1=1/2.数列{an}的通项公式为an=(1/2)*2^(n-1)=2^(n-2),n为正整数.
(2)8an=8*2^(n-2)=2^(n+1),则bn=log2[2^(n+1)]=n+1,是首项为2、公差为1的等差数列.
b1+b2+…+b10=10*(2+10+1)/2=65.