已知函数f(x)=1+ln(x+1)x.(x>0)

1个回答

  • 解题思路:(1)直接求函数f(x)的导函数,化简导函数分子,判断正负即可;

    (2)可以先利用特殊值x=1先尝试k的可能值,然后用导数的方法予以证明;

    或者构造新函数将问题转化为求函数最值,利用函数的导数去研究函数的最值即可.

    (1)函数f(x)=

    1+ln(x+1)

    x

    ∴f′(x)=[1

    x2[

    x/x+1]-1-ln(x+1)]=-[1

    x2[

    x/x+1]+ln(x+1)].

    由x>0,x2>0,[x/x+1]>0,ln(x+1)>0,得f′(x)<0.

    因此函数f(x)在区间(0,+∞)上是减函数.

    (2)解法一:当x>0时,f(x)>[k/x+1]恒成立,令x=1有k<2[1+ln2].

    又k为正整数.则k的最大值不大于3.

    下面证明当k=3时,f(x)>[k/x+1](x>0)恒成立.

    即证明x>0时(x+1)ln(x+1)+1-2x>0恒成立.

    令g(x)=(x+1)ln(x+1)+1-2x,

    则g′(x)=ln(x+1)-1.

    当x>e-1时,g′(x)>0;当0<x<e-1时,g′(x)<0.

    ∴当x=e-1时,g(x)取得最小值g(e-1)=3-e>0.

    ∴当x>0时,(x+1)ln(x+1)+1-2x>0恒成立.

    因此正整数k的最大值为3.

    解法二:当x>0时,f(x)>[k/x+1]恒成立.

    即h(x)=

    (x+1)[1+ln(x+1)]

    x>k对x>0恒成立.

    即h(x)(x>0)的最小值大于k.

    由h′(x)=

    x−1−ln(x+1)

    x2,记Φ(x)=x-1-ln(x+1).(x>0)

    则Φ′(x)=[x/x+1]>0,

    ∴Φ(x)在(0,+∞)上连续递增.

    又Φ(2)=1-ln3<0,Φ(3)=2-2ln2>0,

    ∴Φ(x)=0存在惟一实根a,且满足:a∈(2,3),a=1+ln(a+1),

    由x>a时,Φ(x)>0,h′(x)>0;0<x<a时,Φ(x)<0,h′(x)<0知:

    h(x)(x>0)的最小值为h(a)=

    (a+1)[1+ln(a+1)]

    a=a+1∈(3,4).

    因此正整数k的最大值为3.

    点评:

    本题考点: 导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.

    考点点评: 本题考查函数的导数在最大值、最小值中的应用,以及函数的导数法研究函数的单调性,同时转化思想是解决此类恒成立问题的“良方”.