为了输入方便,换元法,令t=tan²x,则t>1
∴ y=2tanx/(1-tan²x) *tan³x
=2t²/(1-t)
=2[(t²-1)+1]/(1-t)
=2[(t²-1)/(1-t)+1/(1-t)]
=2[-(t+1)+1/(1-t)]
=2{-[(t-1)+1/(t-1)]-2]
≤2*(-2√1-2)
=-8
当且仅当 t-1=1/(t-1),即t=√2+1时等号成立
∴ y的最大值为-8
为了输入方便,换元法,令t=tan²x,则t>1
∴ y=2tanx/(1-tan²x) *tan³x
=2t²/(1-t)
=2[(t²-1)+1]/(1-t)
=2[(t²-1)/(1-t)+1/(1-t)]
=2[-(t+1)+1/(1-t)]
=2{-[(t-1)+1/(t-1)]-2]
≤2*(-2√1-2)
=-8
当且仅当 t-1=1/(t-1),即t=√2+1时等号成立
∴ y的最大值为-8