解题思路:(1)求直线BC的解析式,首先要求出的是B、C的坐标,即OB、OC的长;连接O′B,在直角三角形O′DB中可根据O′D及半径的长用勾股定理求出DB的长,然后根据OD的长即O′横坐标的绝对值求出OB的长,即可求出B的坐标.求OC长,可根据△BOC∽△O′DB得出的比例线段来求出.求出B、C的坐标后,可用待定系数法求出直线BC的解析式.
(2)由于抛物线过A、B两点,根据抛物线的对称性进可得出抛物线的对称轴为x=-2,又已知抛物线的顶点在直线BC上,由此可求出抛物线顶点的坐标.然后用顶点式的二次函数通式来设抛物线的解析式,然后将B点坐标代入即可求出抛物线的解析式.
(3)可根据(2)得出的抛物线的解析式,求出P点的坐标.由于四边形DBPQ为平行四边形,那么DP平行且相等于DB,因此可将P点坐标左移DB长即4个单位,即可得出Q点,然后将Q点坐标代入抛物线的解析式中即可判断出Q点是否在抛物线上.
(1)连接O′B
∵O′(-2,-3),MN过点O′且与x轴垂直
∴O′D=3,OD=2,AD=BD=[1/2]AB
∵⊙O′的半径为5
∴BD=AD=4
∴OA=6,OB=2
∴点A、B的坐标分别为(-6,0)、(2,0)
∵BC切⊙O′于B
∴O′B⊥BC
∴∠OBC+∠O′BD=90°
∵∠O′BD+∠BO′D=90°
∴∠OBC=∠BO′D
∵∠BOC=∠BDO′=90°
∴△BOC∽△O′DB
∴[OB/O′D=
OC
BD]
∴OC=[OB•BD/O′D]=[2×4/3=
8
3]
∴点C的坐标为(0,[8/3])
设直线BC的解析式为y=kx+b
∴
b=
8
3
2k+b=0
解得
k=-
4
3
b=
8
3
∴直线BC的解析式为y=-[4/3]x+[8/3];
(2)由圆和抛物线的对称性可知MN是抛物线的对称轴,
∴抛物线顶点的横坐标为-2
∵抛物线的顶点在直线y=-[4/3]x+[8/3]上
∴y=[16/3]即抛物线的顶点坐标为(-2,[16/3])
设抛物线的解析式为y=a(x+6)(x-2)
得[16/3]=a(-2+6)(-2-2)
解得a=-
1
3
∴抛物线的解析式为y=-[1/3](x+6)(x-2)=-[1/3]x2-[4/3]x+4;
(3)由(2)得抛物线与y轴的交点P的坐标为(0,4),
若四边形DBPQ是平行四边形,
则有BD∥PQ,BD=PQ,
∴点Q的纵坐标为4
∵BD=4
∴PQ=4
∴点Q的横坐标为-4
∴点Q的坐标为(-4,4)
∴当x=-4时,y=-[1/3]x2-[4/3]x+4=-[1/3]×16+[16/3]+4=4
∴点Q在抛物线上
∴在抛物线上存在一点Q(-4,4),使四边形DBPQ为平行四边形.
点评:
本题考点: 二次函数综合题.
考点点评: 本题考查了待定系数法求二次函数解析式、三角形相似、平行四边形的判定等知识点,综合性强,考查学生数形结合的数学思想方法.