(1)若向量AD=(3,5),求点C的坐标;
BC=AD=(3,5).A(1,1),向量AB=(6,0),∴B(7,1).C(10,6).
(2)设P(x,y),当AB向量的模等于AD 向量的模时,求x,y满足的关系式.
|AD|=6,设AB=a, AD=b.
AP=a/2+t(a/2+b)=a+s(b-a).得到s=t=1/3.
设D(u,v)(u-1)²+(v-1)²=36,P(x,y)
(x-1,y-1)=AP=2a/3+b/3=(u/3+11/3,v/3-1/3)
x=u/3+14/3,y=v/3+2/3. (u-1)²+(v-1)²=36
x,y满足的关系式:(3x-14)²+(3y-3)²=36