连接BM,
∵AD‖BC,∴∠MAO=∠NCO
又∠AOM=∠CON,AO=CO,∴△AMO≌△CNO
∴VN=ON=OM=AM
∴△ABM≌△OBM,∠ABM=∠OBM
又MN⊥BD,BO为MN的中垂线,∴BM=BN,∠OBM=∠OBN=∠ABM=90°÷3=30°
∠NMB=90°-∠OBM=60°=∠NBM
∴BN=MN=BM(△BMN为等边三角形)
连接BM,
∵AD‖BC,∴∠MAO=∠NCO
又∠AOM=∠CON,AO=CO,∴△AMO≌△CNO
∴VN=ON=OM=AM
∴△ABM≌△OBM,∠ABM=∠OBM
又MN⊥BD,BO为MN的中垂线,∴BM=BN,∠OBM=∠OBN=∠ABM=90°÷3=30°
∠NMB=90°-∠OBM=60°=∠NBM
∴BN=MN=BM(△BMN为等边三角形)