解题思路:从图(1)中寻找证明结论的思路:延长FE交DC边于M,连MG.构造出△GFE≌△GMC.易得结论;在图(2)、(3)中借鉴此解法证明.
(1)EG=CG,EG⊥CG.(2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,∠F=45°.
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=[1/2]FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
又∵FG=DG,
∠CMG=[1/2]∠EMC=45°,
∴∠F=∠GMC.
∵在△GFE与△GMC中,
FG=MG
∠F=∠GMC
EF=CM,
∴△GFE≌△GMC(SAS).
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)
点评:
本题考点: 旋转的性质;全等三角形的判定与性质;正方形的性质.
考点点评: 此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.