令y=x+1 ,则原式化成 (y-1)^2 + (1-1/y)^2 = 3
把平方展开y^2 - 2y + 1 + 1- 2/y + (1/y)^2 = 3
整理得 [y^2+2+(1/y)^2] - 2(y+1/y) = 3
(y+1/y)^2 - 2(y+1/y) - 3 = 0
再令z=y+1/y 带入,得 z^2 - 2z - 3 = 0
z=3 或者 z= -1
y+1/y= -1没有实数根,y+1/y=3 解得y = (3+根号5)/2 或 y=(3-根号5)/2
最后解得x = [(3+根号5)/2] -1 或 x=[(3-根号5)/2]-1