f(x)=kx+b
则f[f(x)]=k(kx+b)+b
=k²x+b)k+1)
=27x+36
k²=27
b(k+1)=36
k=±3√3
b=36/(k+1)
所以f(x)=-3√3x+18(3√3+1)/13或f(x)=3√3x+18(3√3-1)/13
f(x)=kx+b
则f[f(x)]=k(kx+b)+b
=k²x+b)k+1)
=27x+36
k²=27
b(k+1)=36
k=±3√3
b=36/(k+1)
所以f(x)=-3√3x+18(3√3+1)/13或f(x)=3√3x+18(3√3-1)/13