∵∠ABC=60度
∴∠ABP+∠CBP=60度
又∵∠ABP+∠PAB=60度
∴∠CBP=∠BAP
又∵∠APB=∠BPC
∴△APB∽△BPC
∴BP的平方=PA×PC
∴PB=2√3
(2)由∠BPA=120°,∠AB′C=60°,
∴A,P,C,B′四点共圆.
∴∠APB′=∠ACB′=60°,
∴∠APB+∠APB′=180°,
∴BPB′三点共线.
在PB′上取一点D,使得∠PCD=60°,
由∠CPB′=120°-60°=60°,
∴△PCD是等边三角形,得:PC=PD(1),
在△APC和△B′DC中,
AC=B′C,由∠PCD=∠ACB′=60°,
∴∠ACP=∠B′CD,PC=DC,
∴△ACP≌△B′CD,得AP=DB′(2)
由(1),(2)得:
BP+AP+CP=BB′