已知Sn是等比数列an的前n项和,S3,S9,S6成等差数列.求公比q.并证明ak,a(k+6),a(k+3)成等差数列

1个回答

  • {an}为等比数列

    S3,S9,S6成等差数列

    那么2S9=S3+S6

    若q=1,则Sn=na1 ,a1≠0

    则18a1=3a1+6a1,不合题意

    则q≠1

    ∴2a1(q^9-1)/(q-1)=a1(q^3-1)/(q-1)+a1(q^6-1)/(q-1)

    ==>

    2(q^9-1)=q^3-1+q^6-1

    ∴2q^9-q^6-q^3=0

    2q^6-q^3-1=0

    (2q^3+1)(q^3-1)=0

    解得q^3=1(舍去)或q^3=-1/2

    ∴q=-1/³√2

    2a(k+6)=2a1*q^(k+5)

    =2a1*q^(k-1)*q^6

    =2*(-1/2)^2*a1*q^(k-1)

    =1/2*a1*q^(k-1)

    ak+a(k+3)

    =a1*q^(k-1)+a1*q^(k+2)

    =a1*q^(k-1)+a1*q^(k-1)*q^3

    =a1*q^(k-1)-1/2*a1*q^(k-1)

    =1/2a1*q^(k-1)

    2a(k+6)=ak+a(k+3)

    即ak,a(k+6),a(k+3)为等差数列.