F(x)=sinxcosx
=1/2*(2sinxcosx)
=1/2*sin2x
所以最小值=-1/2
f(x)=√ 3sinx+sin(π/2+x)
=√ 3sinx+cosx
=2(sinx*√3/2+cosx*1/2)
=2(sinxcosπ/3+cosxsinπ/3)
=2sin(x+π/3)
所以最大值=2
F(x)=sinxcosx
=1/2*(2sinxcosx)
=1/2*sin2x
所以最小值=-1/2
f(x)=√ 3sinx+sin(π/2+x)
=√ 3sinx+cosx
=2(sinx*√3/2+cosx*1/2)
=2(sinxcosπ/3+cosxsinπ/3)
=2sin(x+π/3)
所以最大值=2