f(x)=(1+3x)/(1-3x)
=(2+3x-1)/(1-3x)
=[2-(1-3x)]/(1-3x)
=2/(1-3x)-1
=-2/(3x-1)-1
3x-1=0
x=1/3
所以f(x)在(-无穷,1/3)上是单调递增,在(1/3,+无穷)上是单调递增
当x∈[1,3]时
所以(1+3)/(1-3)
f(x)=(1+3x)/(1-3x)
=(2+3x-1)/(1-3x)
=[2-(1-3x)]/(1-3x)
=2/(1-3x)-1
=-2/(3x-1)-1
3x-1=0
x=1/3
所以f(x)在(-无穷,1/3)上是单调递增,在(1/3,+无穷)上是单调递增
当x∈[1,3]时
所以(1+3)/(1-3)