是正级数,只需证明有上界以证明其收敛.
当 n>N = [e^4] 时, (n+1)^ln(n)> n+1)^4 > n^3 (n+1)==>
n^2 / (n+1)^ln(n) < n^2/( n^3 (n+1))= 1/(n(n+1)) = 1/n - 1/(n+1)
于是
Σ(n=1到正无穷)[ n^2 / (n+1)^ln(n) ]
= Σ(n=1到 N )[ n^2 / (n+1)^ln(n) ] + Σ(n=N + 1]到正无穷)[ n^2 / (n+1)^ln(n) ]
< Σ(n=1到[e^4])[ n^2 / (n+1)^ln(n) ] + 1/N - 1/(N+1) + 1/(N+1) - 1/(N+2) + .
< Σ(n=1到[e^4])[ n^2 / (n+1)^ln(n) ] + 1/N
所以收敛.