这是学数列的必背公式.
发现:1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/61^2+3^2+……+n^2=n(n+2)(2n
2个回答
相关问题
-
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n
-
求和:1*n+2(n-1)+3(n-2)+……+(n-2)*3+(n-1)*2+n*1 答案是n*(n+1)*(n+2)
-
3*(1+2+3+4+.n)-n =3*(1+n)*n/2-n =(3n^2+n)/2
-
求极限 1/(n^2+1^2)+2/(n^2+2^2)+3/(n^3+3^2)+...+n/(n^2+n^2)
-
1 1 …1 2 2^2 …2^n 3 3^2 …3^n … n n^2 … n^n 行列式求值
-
an=2^n+n,求SnSn=(2^1+2^2+……2^n)+(1+2+3+……+n)=2^(n+1)-2+n(n+1)
-
求证(n+1)(n+2)(n+3)……(n+n)=2^n*1*3*……*(2n-1)
-
求极限Xn=1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+……+n/(n^2+n)
-
归纳法求证1^2/(1*3)+2^2/(3*5)+...+n^2/(2n-1)(2n+1)=n(n+1)/[2(2n+1
-
1+3+5+.+(2n-5)+(2n-3)+(2n-1)+(2n+1)+(2n+3)