已知斜率为1的直线L经过椭圆X^2/4+Y^2/3=1的右焦点,交椭圆于A、B,求线段AB的长度.

1个回答

  • X^2/4+Y^2/3=1

    a^2=4 b^2=3

    c^2=a^2-b^2=1

    ∴右焦点坐标是(1,0)

    则那条直线方程是

    y-0=1(x-1)

    y=x-1代入椭圆方程得

    x^2/4+(X-1)^2/3=1

    3x^2+4(x^2-2x+1)=12

    7x^2-8x-8=0

    xa+xb=8/7

    xaxb=-8/7

    (xa-xb)^2=(xa+xb)^2-4xaxb

    =64/49+32/7

    =288/49

    (ya-yb)^2=(xa-1-xb+1)^2=(xa-xb)^2=288/49

    线段AB的长度=√[(xa-xb)^2+(ya-yb)^2]

    =√(288/49+288/49)=24/7