f(x)=sin2x+根号3cos2x
=2(1/2*sin2x+2分之根号3cos2x)
=2sin(2x+π/3)
那么最小正周期T=2牌/2=π
最大值f(x)max=2
令2kπ-π/2≤2x+π/3≤2kπ+π/2
则:kπ-5π/12≤x≤kπ+π/12
即单调递增区间为[kπ-5π/12,kπ+π/12]
f(x)=sin2x+根号3cos2x
=2(1/2*sin2x+2分之根号3cos2x)
=2sin(2x+π/3)
那么最小正周期T=2牌/2=π
最大值f(x)max=2
令2kπ-π/2≤2x+π/3≤2kπ+π/2
则:kπ-5π/12≤x≤kπ+π/12
即单调递增区间为[kπ-5π/12,kπ+π/12]