x^2+x+1=(x+1/2)^2+3/4>0
x^2-x+1=(x-1/2)^2+3/4>0
两个分母都大于0
所以两边乘以(x^2+x+1)(x^2-x+1)
(x-a)(x^2-x+1)>(x-b)(x^2+x+1)
x^3-(a+1)x^2+(a+1)x-a>x^3+(1-b)x^2+(1-b)x-b
-(a+1)x^2+(a+1)x-a>(1-b)x^2+(1-b)x-b
(1-b+a+1)x+(1-b-a-1)x+a-
x^2+x+1=(x+1/2)^2+3/4>0
x^2-x+1=(x-1/2)^2+3/4>0
两个分母都大于0
所以两边乘以(x^2+x+1)(x^2-x+1)
(x-a)(x^2-x+1)>(x-b)(x^2+x+1)
x^3-(a+1)x^2+(a+1)x-a>x^3+(1-b)x^2+(1-b)x-b
-(a+1)x^2+(a+1)x-a>(1-b)x^2+(1-b)x-b
(1-b+a+1)x+(1-b-a-1)x+a-