解题思路:根据一次函数与正比例函数的性质对四个选项进行逐一分析即可.
A、由一次函数的图象可知,m<0,-n>0,故n<0,mn>0;由正比例函数的图象可知mn<0,两结论相矛盾,故本选项错误;
B、由一次函数的图象可知,m<0,-n>0,故n<0,mn>0;由正比例函数的图象可知mn>0,两结论一致,故本选项正确;
C、由一次函数的图象可知,m>0,-n>0,故n<0,mn<0;由正比例函数的图象可知mn<0,两结论一致,故本选项正确;
D、由一次函数的图象可知,m>0,-n<0,故n>0,mn>0;由正比例函数的图象可知mn>0,两结论一致,故本选项正确.
故选A.
点评:
本题考点: 一次函数的图象;正比例函数的图象.
考点点评: 此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.