(1)x<0时,-x>0
∵x≥0时f(x)=ln(x2-2x+2)
∴f(-x)=ln(x2+2x+2)(2分)
∵y=f(x)是偶函数,∴f(-x)=f(x)(4分)
x<0时,f(x)=ln(x2+2x+2)(6分)
∴f(x)=
ln(x2- 2x+2),x≥0x09ln(x2+2x+2),x<0 x09 (8分)
(2)由(1)知x<0时,f(x)=ln(x2+2x+2),根据复合函数的单调性可得函数的单调增区间[-1.0)
x≥0时f(x)=ln(x2-2x+2),根据复合函数的单调性可得函数的单调增区间[1.+∞)
所以函数的单调增区间为:(-1,0),(1,+∞)