证明:连接AM.
∵MN是AD中垂线
∴∠ADM=∠DAM,AM=DM
∵∠ADM=∠B+∠BAD, ∠DAM=∠CAM+∠DAC
∴∠B+∠BAD=∠CAM+∠DAC
∴∠BAD=∠DAC
∴∠B=∠CAM
∵∠BMA=∠AMC(公共角)
∴△ABC∽△CAM
∴AM/CM=BM/AM,
即:AM^2=CM*BM
∴DM^2=CM*BM
证明:连接AM.
∵MN是AD中垂线
∴∠ADM=∠DAM,AM=DM
∵∠ADM=∠B+∠BAD, ∠DAM=∠CAM+∠DAC
∴∠B+∠BAD=∠CAM+∠DAC
∴∠BAD=∠DAC
∴∠B=∠CAM
∵∠BMA=∠AMC(公共角)
∴△ABC∽△CAM
∴AM/CM=BM/AM,
即:AM^2=CM*BM
∴DM^2=CM*BM