等比数列{an},公比为q,a1a3=a2^2
数列{an+1}也是等比数列,
即 (a1+1)(a3+1)=(a2+1)^2
得:a1+a3=2a2
(a1+a3)^2=4(a2)^2=4(a1a3)
(a1-a3)^2=0
a1=a3
即 {an}是常数列,an=a1=2
{an+1}也是常数列,每一项都是3
故 Sn=3n
等比数列{an},公比为q,a1a3=a2^2
数列{an+1}也是等比数列,
即 (a1+1)(a3+1)=(a2+1)^2
得:a1+a3=2a2
(a1+a3)^2=4(a2)^2=4(a1a3)
(a1-a3)^2=0
a1=a3
即 {an}是常数列,an=a1=2
{an+1}也是常数列,每一项都是3
故 Sn=3n