问一道不定积分的题目求(arctanx)^2的原函数

1个回答

  • 用分部积分法

    ∫(arctanx)^2dx

    =x(arctanx)^2-∫[x*2arctanx*(1/1+x^2)]dx

    =x(arctanx)^2-∫[2x/(1+x^2)]arctanxdx

    再对∫[2x/(1+x^2)]arctanxdx先换元,再分部积分:

    令u=arctanx,du=1/(1+x^2)

    x=tanu,2x=2tanu

    ∫[2x/(1+x^2)]arctanxdx

    =∫2utanudu

    =∫tanud(u^2)

    =u^2tanu-∫u^2/(1+u^2)du

    =u^2tanu-∫(u^2+1-1)/(u^2+1)du

    =u^2tanu-∫[1-1/(1+u^2)]du

    =u^2tanu-u+arctanu

    =x(arctanx)^2-arctanx+tanx+C

    原式

    =x(arctanx)^2-x(arctanx)^2+arctanx-tanx+C