n=2001,n+1=2002
a=n^2+n^2*(n+1)^2+(n+1)^2
=n^2+n^2(n^2+2n+1)+(n^2+2n+1)
=n^2+n^4+2*n^3+n^2+n^2+2n+1
=n^4+2*n^3+3*n^2+2n+1
=n^2(n^2+n+1)+n(n^2+n+1)+(n^2+n+1) 这一步不太好明白,你可以试着倒回去算一下,是用拼凑的方法凑出来的.
=(n^2+2n+1)*(n^2+2n+1)
=(n^2+2n+1)^2完全平方数
n=2001,n+1=2002
a=n^2+n^2*(n+1)^2+(n+1)^2
=n^2+n^2(n^2+2n+1)+(n^2+2n+1)
=n^2+n^4+2*n^3+n^2+n^2+2n+1
=n^4+2*n^3+3*n^2+2n+1
=n^2(n^2+n+1)+n(n^2+n+1)+(n^2+n+1) 这一步不太好明白,你可以试着倒回去算一下,是用拼凑的方法凑出来的.
=(n^2+2n+1)*(n^2+2n+1)
=(n^2+2n+1)^2完全平方数