当n=1时,即1=1;
若n=k时,式子(k!)^2≥k^k成立;
当n=k+1时,式子[(k+1)!]^2≥k^k'(k+1)^2;
利用比值法:(k+1)^(k+1)/k^k'(k+1)^2
=(k+1)^(k-1)/k^k>(k+1)^(k-1)/(k+1)^k=1/k+1
当n=1时,即1=1;
若n=k时,式子(k!)^2≥k^k成立;
当n=k+1时,式子[(k+1)!]^2≥k^k'(k+1)^2;
利用比值法:(k+1)^(k+1)/k^k'(k+1)^2
=(k+1)^(k-1)/k^k>(k+1)^(k-1)/(k+1)^k=1/k+1