(Ⅰ)因为bsinA=根号三acosB,由正弦定理可得sinBsinA=根号三sinAcosB.
因为在△ABC中,sinA≠0,所以tanB=根号三
.
又0<B<π,所以B=π /3
.
(Ⅱ)由余弦定理 b2=a2+c2-2accosB,因为B=π / 3 ,b=2根号三
,所以12=a2+c2-ac.
因为a2+c2≥2ac,所以ac≤12.
当且仅当a=c=2根号3
时,ac取得最大值12.
(Ⅰ)因为bsinA=根号三acosB,由正弦定理可得sinBsinA=根号三sinAcosB.
因为在△ABC中,sinA≠0,所以tanB=根号三
.
又0<B<π,所以B=π /3
.
(Ⅱ)由余弦定理 b2=a2+c2-2accosB,因为B=π / 3 ,b=2根号三
,所以12=a2+c2-ac.
因为a2+c2≥2ac,所以ac≤12.
当且仅当a=c=2根号3
时,ac取得最大值12.