解题思路:(1)根据矩形的对边相等求出BC的长,然后利用路程、速度、时间的关系求解即可;
(2)根据点的运动可知,当点E、F分别运动到AD、BC的中点时,正方形的面积最小,求出d、m的值,再根据开始于结束时正方形的面积最大,利用勾股定理求出BD的平方,即为最大值n;
(3)过点E作EI⊥BC垂足为点I,则四边形DEIC为矩形,然后表示出EI、IF,再利用勾股定理表示出EF2,根据正方形的面积得到y与x的函数关系式,然后把y=16代入求出x的值,即可得到时间.
(1)∵BC=AD=4,4÷1=4,
∴0≤x≤4;
故答案为:0≤x≤4;
(2)根据题意,当点E、F分别运动到AD、BC的中点时,
EF=AB最小,所以正方形EFGH的面积最小,
此时,d2=9,m=4÷2=2,
所以,d=3,
根据勾股定理,n=BD2=AD2+AB2=42+32=25,
故答案为:3,2,25;
(3)如图,过点E作EI⊥BC垂足为点I.则四边形DEIC为矩形,
∴EI=DC=3,CI=DE=x,
∵BF=x,
∴IF=4-2x,
在Rt△EFI中,EF2=EI2+IF2=32+(4-2x)2,
∵y是以EF为边长的正方形EFGH的面积,
∴y=32+(4-2x)2,
当y=16时,32+(4-2x)2=16,
整理得,4x2-16x+9=0,
解得,x1=
4+
7
2,x2=
4−
7
2,
∵点F的速度是1cm/s,
∴F出发
4+
7
2或
4−
7
2秒时,正方形EFGH的面积为16cm2.
点评:
本题考点: 动点问题的函数图象.
考点点评: 本题考查了动点问题的函数图象,(2)根据点的移动,结合二次函数图象找出当EF=AB时正方形的面积为最小值是解题的关键,(3)求出正方形EFGH的面积的表达式是解题的关键.