S(n)=4a(n-1)+1
S(n+1)=4an+1
两者相减,得
S(n+1)-S(n)=a(n+1)=4[an-a(n-1)]
bn=a(n+1)-2anb(n-1)=an-2a(n-1)
bn=a(n+1)-2an=4[an-a(n-1)]-2an=2an-4a(n-1)=2*b(n-1)
{bn}等比;公比为2的,首项a1=1,s2=4a1+2;a2=5,
b1=a2-2a1=5-2×1=3
故bn=3*2^(n-1)
bn=a(n+1)-2an=3*2^(n-1)
a(n+1)/2^(n+1)-an/2^n=3/4
{an/2^n}等差,公差3/4,首项1/2
an/2^n=1/2+(n-1)*3/4=(3n-1)/4
an=(3n-1)2^n/4