OP*OQ=0,说明OP垂直于OQ.同时,P、Q是圆上的点,可与直线方程联立.设两交点为(3-2y1,y1),(3-2y2,y2),由OP*OQ=0,可得,(3-2y1)*(3-2y2)+y1*y2=0;即9-6(y1+y2)+5y1*y2=0.(1).
直线方程与圆方程联立后,5y^2-20y+12+m=0.(2).所以,y1+y2=4,y1*y2=(12+m)/5,将他们带入(1)中:可得m=3.最后,验证(2)式的三角形=4>0,说明m值存在,其值为3.
OP*OQ=0,说明OP垂直于OQ.同时,P、Q是圆上的点,可与直线方程联立.设两交点为(3-2y1,y1),(3-2y2,y2),由OP*OQ=0,可得,(3-2y1)*(3-2y2)+y1*y2=0;即9-6(y1+y2)+5y1*y2=0.(1).
直线方程与圆方程联立后,5y^2-20y+12+m=0.(2).所以,y1+y2=4,y1*y2=(12+m)/5,将他们带入(1)中:可得m=3.最后,验证(2)式的三角形=4>0,说明m值存在,其值为3.