(1)证明:设BD中点为O,连接OE
∵E和B都是圆上的点
∴OE=OB
∴∠OEB=∠OBE
又∵BE平分∠ABC
∴∠OBE=∠CBE
∴BE平分角ABC
(2).
∵AC是圆O的切线
∴∠AED=∠ABE(弦切角定理)
在△AED和△ABE中:
∵∠A=∠A,∠AED=∠ABE
∴△AED∽△ABE
∴AE/AB=AD/AE
即AB*AD=AE²
∴AB=AE²÷AD=12
∴直径BD=AB-AD=6
∴外接圆的半径长3.
(1)证明:设BD中点为O,连接OE
∵E和B都是圆上的点
∴OE=OB
∴∠OEB=∠OBE
又∵BE平分∠ABC
∴∠OBE=∠CBE
∴BE平分角ABC
(2).
∵AC是圆O的切线
∴∠AED=∠ABE(弦切角定理)
在△AED和△ABE中:
∵∠A=∠A,∠AED=∠ABE
∴△AED∽△ABE
∴AE/AB=AD/AE
即AB*AD=AE²
∴AB=AE²÷AD=12
∴直径BD=AB-AD=6
∴外接圆的半径长3.