在△ABC中,已知A>B>C,且A=2C,b=4,a+c=8,求a,c的长
正弦公式 :a/sinA=b/sinB=c/sinC=(a+c)/(sinA+sinC)
代入以知条件后 :8/(sinC+sin2C)=4/sin3C (sin3c=sin(2c+c)=sin2c*cos c+cos2c*sinc)
解出 :cosC=-1/2 或 3/4
又因 :C是最小角
所以 :cosC=3/4
cosC=(b^2+a^2-c^2)/2ab=[16+8(a-c)]/8a
a=24/5,c=16/5