第一问:
因为A是实对称矩阵,所以存在正交矩阵P
P'AP=∧ ∧是A的特征值构成的对角阵
A=P∧P'
A^3=P∧^3P'=E
所以∧^3=E
所以λ1^3.λn^3都等于1
所以λ1=λ2=..=λn=1
第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)
所以A相似于这n个特征值构成的对角阵
P'*A*P=E
所以 A=PEP'=PP'=E
刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解
第一问:
因为A是实对称矩阵,所以存在正交矩阵P
P'AP=∧ ∧是A的特征值构成的对角阵
A=P∧P'
A^3=P∧^3P'=E
所以∧^3=E
所以λ1^3.λn^3都等于1
所以λ1=λ2=..=λn=1
第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)
所以A相似于这n个特征值构成的对角阵
P'*A*P=E
所以 A=PEP'=PP'=E
刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解