题目写错了吧,应该是b/(bc+b+1)啊
证明:因为abc=1
所以b=1/ac
ab=1/c
bc=1/a
所以
a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)
=a/(1/c+a+1)+(1/ac)/(1/a+1/ac+1)+c/(ac+c+1)
=ac/(ac+c+1)+1/(ac+c+1)+c/(ac+c+1)
=(ac+c+1)/(ac+c+1)
=1
所以a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)=1
题目写错了吧,应该是b/(bc+b+1)啊
证明:因为abc=1
所以b=1/ac
ab=1/c
bc=1/a
所以
a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)
=a/(1/c+a+1)+(1/ac)/(1/a+1/ac+1)+c/(ac+c+1)
=ac/(ac+c+1)+1/(ac+c+1)+c/(ac+c+1)
=(ac+c+1)/(ac+c+1)
=1
所以a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)=1