求三角的积化和差,和差化积的所有公式

1个回答

  • [1]

    两角和公式

    sin(A+B) = sinAcosB+cosAsinB

    sin(A-B) = sinAcosB-cosAsinB

    cos(A+B) = cosAcosB-sinAsinB

    cos(A-B) = cosAcosB+sinAsinB

    tan(A+B) = (tanA+tanB)/(1-tanAtanB)

    tan(A-B) = (tanA-tanB)/(1+tanAtanB)

    cot(A+B) = (cotAcotB-1)/(cotB+cotA)

    cot(A-B) = (cotAcotB+1)/(cotB-cotA

    倍角公式

    Sin2A=2SinA•CosA

    Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

    tan2A=2tanA/(1-tanA^2)

    (注:SinA^2 是sinA的平方 sin2(A) )

    三倍角公式

    sin3α=4sinα·sin(π/3+α)sin(π/3-α)

    cos3α=4cosα·cos(π/3+α)cos(π/3-α)

    tan3a = tan a · tan(π/3+a)· tan(π/3-a)

    三倍角公式推导

    sin3a

    =sin(2a+a)

    =sin2acosa+cos2asina

    =2sina(1-sin²a)+(1-2sin²a)sina

    =3sina-4sin³a

    cos3a

    =cos(2a+a)

    =cos2acosa-sin2asina

    =(2cos²a-1)cosa-2(1-sin²a)cosa

    =4cos³a-3cosa

    sin3a=3sina-4sin³a

    =4sina(3/4-sin²a)

    =4sina[(√3/2)²-sin²a]

    =4sina(sin²60°-sin²a)

    =4sina(sin60°+sina)(sin60°-sina)

    =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

    =4sinasin(60°+a)sin(60°-a)

    cos3a=4cos³a-3cosa

    =4cosa(cos²a-3/4)

    =4cosa[cos²a-(√3/2)²]

    =4cosa(cos²a-cos²30°)

    =4cosa(cosa+cos30°)(cosa-cos30°)

    =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

    =-4cosasin(a+30°)sin(a-30°)

    =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

    =-4cosacos(60°-a)[-cos(60°+a)]

    =4cosacos(60°-a)cos(60°+a)

    上述两式相比可得

    tan3a=tanatan(60°-a)tan(60°+a)

    半角公式

    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

    cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

    和差化积

    sinθ+sinφ = 2sin[(θ+φ)/2]cos[(θ-φ)/2]

    sinθ-sinφ = 2cos[(θ+φ)/2]sin[(θ-φ)/2]

    cosθ+cosφ = 2cos[(θ+φ)/2]cos[(θ-φ)/2]

    cosθ-cosφ = -2sin[(θ+φ)/2]sin[(θ-φ)/2]

    tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

    tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

    积化和差

    sinαsinβ = -1/2*[cos(α+β)-cos(α-β)]

    cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]

    sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]

    cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]

    诱导公式

    sin(-α) = -sinα

    cos(-α) = cosα

    sin(π/2-α) = cosα

    cos(π/2-α) = sinα

    sin(π/2+α) = cosα

    cos(π/2+α) = -sinα

    sin(π-α) = sinα

    cos(π-α) = -cosα

    sin(π+α) = -sinα

    cos(π+α) = -cosα

    tanA= sinA/cosA

    tan(π/2+α)=-cotα

    tan(π/2-α)=cotα

    tan(π-α)=-tanα

    tan(π+α)=tanα