解题思路:正实数a,b,c成等比数列,x,y分别为a与b,b与c的等差中项,可得b2=ac,2x=a+b,2y=b+c.代入即可得出.
∵正实数a,b,c成等比数列,x,y分别为a与b,b与c的等差中项,
∴b2=ac,2x=a+b,2y=b+c.
则[a/x]+[c/y]=[2a/a+b+
2c
b+c]=
2(ab+2ac+bc)
ab+ac+b2+bc=
2(ab+2ac+bc)
ab+2ac+bc=2.
故答案为:2.
点评:
本题考点: 基本不等式;等差数列的通项公式.
考点点评: 本题考查了等差数列与等比数列的性质,属于基础题.